Abstract
This paper presents the optimization of key component sizes and control strategy for parallel hybrid electric vehicles (parallel HEVs) using the bees algorithm (BA). The BA is an intelligent optimization tool that mimics the food foraging behavior of honey bees. Parallel HEV configuration and electric assist control strategy were used to conduct the research. The values of the key component size and the control strategy parameters were adjusted according to the BA to minimize the weighted sum of fuel consumption (FC) and emissions, while the vehicle performance satisfies the PNGV constraints. In this research, the software ADVISOR was used as the simulation tool, and the driving cycles FTP, ECE-EUDC and UDDS were employed to evaluate FC, emission and dynamic performance. The results demonstrate that the BA is a powerful tool in parallel HEV optimization to determine the optimal parameters of component sizes and control strategy, resulting in the improvement of FC and emissions without sacrificing vehicle performance. In addition, the BA is able to define a global solution with a high rate of convergence.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.