Abstract

Organisms may simultaneously face thermal, desiccation and nutritional stress under climate change. Understanding the effects arising from the interactions among these stressors is relevant for predicting organisms' responses to climate change and for developing effective conservation strategies. Using both dynamic and static protocols, we assessed for the first time how sublethal desiccation exposure (at 16.7%, 50.0% and 83.3% of LD50) impacts the heat tolerance of foragers from two social bee species found on the Greek island of Lesbos: the managed European honey bee, Apis mellifera, and the wild, ground-nesting sweat bee Lasioglossum malachurum. In addition, we explored how a short-term starvation period (24 h), followed by a moderate sublethal desiccation exposure (50% of LD50), influences honey bee heat tolerance. We found that neither the critical thermal maximum (CTmax) nor the time to heat stupor was significantly impacted by sublethal desiccation exposure in either species. Similarly, starvation followed by moderate sublethal desiccation did not affect the average CTmax estimate, but it did increase its variance. Our results suggest that sublethal exposure to these environmental stressors may not always lead to significant changes in bees' heat tolerance or increase vulnerability to rapid temperature changes during extreme weather events, such as heat waves. However, the increase in CTmax variance suggests greater variability in individual responses to temperature stress under climate change, which may impact colony-level performance. The ability to withstand desiccation may be impacted by unmeasured hypoxic conditions and the overall effect of these stressors on solitary species remains to be assessed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.