Abstract

BackgroundSympatric congeneric plants might share pollinators, or each species might avoid competition by evolving specialized traits that generate partitions in pollinator assemblages. In both cases, pollen limitation (a decrease in the quality and quantity of compatible reproductive pollen) can occur, driving the plant mating system to autogamy as a mechanism of reproductive assurance. We assessed the relationships between pollinator assemblages and mating systems in a group of sympatric congeneric plants. We attempted to answer the following questions: (i) How similar are pollinator assemblages among sympatric cactus species? (ii) Which mating systems do sympatric cactus species use?MethodsWe studied sympatric Eriosyce taxa that inhabit a threatened coastal strip in a mediterranean-type ecosystem in central Chile. We performed field observations on four taxa and characterized pollinators during the years 2016 and 2017. We estimated differences in the pollinator assemblages using the Bray–Curtis index. To elucidate the mating systems, we conducted hand-pollination experiments using three treatments: manual cross-pollination, automatic self-pollination, and control (unmanipulated individuals). We tested differences in seed production for statistical significance using Kruskal–Wallis analysis.ResultsEriosyce subgibbosa showed a distinctive pollinator assemblage among the sympatric species that we studied (similarity ranged from 0% to 8%); it was visited by small bees and was the only species that was visited by the giant hummingbird Patagona gigas. Pollinator assemblages were similar between E. chilensis (year 2016 = 4 species; 2017 = 8) and E. chilensis var. albidiflora (2016 = 7; 2017 = 4); however, those of E. curvispina var. mutabilis (2016 = 7; 2017 = 6) were less similar to those of the aforementioned species. E. curvispina var. mutabilis showed the highest interannual variation in its pollinator assemblage (18% similarity). Reproduction in E. subgibbosa largely depends on pollinators, although it showed some degree of autogamy. Autonomous pollination was unfeasible in E. chilensis, which depended on flower visitors for its reproductive success. Both E. chilensis var. albidiflora and E. curvispina var. mutabilis showed some degree of autogamy.DiscussionWe observed differences in pollinator assemblages between E. subgibbosa and the remaining Eriosyce taxa, which depend on hymenopterans for pollen transfer. Pollinator assemblages showed considerable interannual variation, especially those of E. subgibbosa (ornithophilous syndrome) and E. curvispina var. mutabilis (melitophilous syndrome). Autogamous reproduction in these taxa may act as a reproductive assurance mechanism when pollinator availability is unpredictable. Our study contributes to improving our understanding of the reproductive systems of ecological interactions between threatened species in a Chilean mediterranean-type ecosystem.

Highlights

  • Pollinator assemblages are a crucial component of plant reproduction (Eckhart, 1992; Johnson, 2010), driving the evolution of plant mating systems (Barrett, 1998; Kalisz, Vogler & Hanley, 2004; Goodwillie, Kalisz & Eckert, 2005)

  • Eriosyce subgibbosa showed a distinctive pollinator assemblage among the sympatric species that we studied; it was visited by small bees and was the only species that was visited by the giant hummingbird Patagona gigas

  • All observed bees were native species (N = 14) except for Apis mellifera Linnaeus, 1758, with three visits accounted for only 0.9% of visits to E. chilensis var. albidiflora (Appendix 1)

Read more

Summary

Introduction

Pollinator assemblages are a crucial component of plant reproduction (Eckhart, 1992; Johnson, 2010), driving the evolution of plant mating systems (Barrett, 1998; Kalisz, Vogler & Hanley, 2004; Goodwillie, Kalisz & Eckert, 2005). Pollinator assemblage properties in sympatric species could occur in a continuum between the two extremes: sharing a wide range of floral visitors (Marques et al, 2007; Schlüter et al, 2009; Ferreira et al, 2018) or specializing in the use of floral visitors, which reduces long-term competition by pollinators (Stone, Willmer & Rowe, 1988) These scenarios can favor pollen limitation either by deleterious impacts of heterospecific pollen transference, such as microallelopathic effects at the stigma level and clogging (Van Der Niet, Johnson & Linder, 2006; Bodbyl Roels & Kelly, 2011; Barrett & Harder, 2017), or by changeable pollination environments (Eckert & Herlihy, 2004; Kalisz, Vogler & Hanley, 2004; Verdú et al, 2006). Discussion: We observed differences in pollinator assemblages between E. subgibbosa and the remaining Eriosyce taxa, which depend on hymenopterans for

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.