Abstract

The recently developed BEEF-vdW exchange-correlation method provides a reasonably reliable description of both long-range van der Waals interactions and short-range covalent bonding between molecules and surfaces. However, this method still suffers from the excessive electron delocalization that is connected with the self-interaction error and, consequently, the calculated chemical and physical properties such as formation energy and band gap deviate markedly from the experimental values, especially when strongly correlated systems are under investigation. In this contribution, BEEF-vdW+U calculations have been performed to study the thermodynamic, structural, electronic, and magnetic properties of La-based perovskites. An effective interaction parameter and an energy adjustment are determined simultaneously by a mixing GGA and GGA+U method, where the enthalpy or Gibbs free energy of formation of oxides containing a transition metal in different oxidation states are fitted to available experimental data. The is found to have its origin in the fact that the GGA+U method gives rise to the offsets in the total energy that include not only the desired physical correction but also an arbitrary contribution. Calculated results indicate that the BEEF-vdW method provides a more accurate description of the bonding in the O2 molecule than the PBE method and has generally smaller values for the 3d-block transition metals, thereby giving rise to band gaps and magnetic moments that are in better agreement with the experimentally measured values.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.