Abstract
Beef-based medium beef extract (BE) and standard medium tryptic soy broth (TSB) are used as minimally processed food models to study the effects on Escherichia coli O157:H7 biofilm formation. The effects of temperatures (4, 10, 25, 37, and 42°C), pH values (4.5, 5.0, 5.5, 6.0, 7.0, and 8.0), strain characteristics, and the expression of functional genes on the biofilm formation ability of the bacteria were determined. The three tested E. coli O157:H7 strains produced biofilm in both media. Biofilm formation was greater in BE than in TSB (P < 0.05). The strongest biofilm formation capacity of E. coli O157:H7 was achieved at 37°C and pH 7.0. Biofilm formation was significantly inhibited for three tested strains incubated at 4°C. Biofilm formation ability was correlated with swarming in TSB. Biofilm formation was significantly and positively correlated with autoaggregation or hydrophobicity in BE (P < 0.05). At the initial stage of biofilm formation, the expressions of luxS, sdiA, csgD, csgA, flhC, adrA, and rpoS were significantly higher in BE than in TSB (P < 0.05). At the maturity stage, the expressions of luxS, sdiA, csgD, csgA, flhC, csrA, adrB, adrA, iraM, and rpoS were significantly higher in TSB than in BE (P < 0.05). Such information could help in the development of effective biofilm removal technologies to deal with risks of E. coli O157:H7 biofilms in the beef industry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.