Abstract

BackgroundAccumulation of beta-amyloid and neuroinflammation trigger Alzheimer’s disease. We previously found that lipopolysaccharide (LPS) caused neuroinflammation with concomitant accumulation of beta-amyloid peptides leading to memory loss. A variety of anti-inflammatory compounds inhibiting nuclear factor kappaB (NF-κB) activation have showed efficacy to hinder neuroinflammation and amyloidogenesis. We also found that bee venom (BV) inhibits NF-κB.MethodsA mouse model of LPS-induced memory loss used administration of BV (0.8 and 1.6 μg/kg/day, i.p.) to ICR mice for 7 days before injection of LPS (2.5 mg/kg/day, i.p.). Memory loss was assessed using a Morris water maze test and passive avoidance test. For in vitro study, we treated BV (0.5, 1, and 2 μg/mL) to astrocytes and microglial BV-2 cells with LPS (1 μg/mL).ResultsWe found that BV inhibited LPS-induced memory loss determined by behavioral tests as well as cell death. BV also inhibited LPS-induced increases in the level of beta-amyloid (Aβ), β-and γ-secretases activities, NF-κB and its DNA-binding activity and expression of APP, and BACE1 and neuroinflammation proteins (COX-2, iNOS, GFAP and IBA-1) in the brain and cultured cells. In addition, pull-down assay and molecular modeling showed that BV binds to NF-κB.ConclusionsBV attenuates LPS-induced amyloidogenesis, neuroinflammation, and therefore memory loss via inhibiting NF-κB signaling pathway. Thus, BV could be useful for treatment of Alzheimer’s disease.

Highlights

  • Alzheimer’s disease (AD) is the most common neurodegenerative disease due to loss of neurons in the brain

  • AD is generally known to be correlated with accumulation of beta-amyloid (Aβ) peptides which is produced from amyloid precursor protein (APP) [2, 3]

  • Inhibitory effect of bee venom (BV) on LPS-induced memory defects Seven- to eight-week old imprinting control region (ICR) mice were administered with LPS (2.5 mg/kg) for 7 days to study whether BV could improve memory in LPS-induced AD mice

Read more

Summary

Introduction

Alzheimer’s disease (AD) is the most common neurodegenerative disease due to loss of neurons in the brain. Lipopolysaccharide (LPS) can trigger neuroinflammation and influence amyloidogenesis in neuronal cells. LPS activates inflammatory cells such as astrocytes and microglia cells in the brain, enhancing neuroinflammation [6,7,8,9]. LPS induces accumulation of Aβ through increased cleavage of APP by increasing BACE1 and γ-secretase activation [9, 10]. Nuclear factor kappaB (NF-κB) can be activated by LPS, and induces. Accumulation of beta-amyloid and neuroinflammation trigger Alzheimer’s disease. We previously found that lipopolysaccharide (LPS) caused neuroinflammation with concomitant accumulation of beta-amyloid peptides leading to memory loss. A variety of anti-inflammatory compounds inhibiting nuclear factor kappaB (NF-κB) activation have showed efficacy to hinder neuroinflammation and amyloidogenesis. We found that bee venom (BV) inhibits NF-κB

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call