Abstract

In this paper, we present a deep convolutional neural network (ConvNet) based framework for estimating the bee pose from a single image. Unlike some existing human pose estimation methods that localize a fixed number of body joints, our method handles the cases with a varying number of targets. Compared to the existing bee pose estimation methods, our framework is more robust and accurate. It is effective even for some challenging images (e.g., when the bee is fed sugar water with a stick). The proposed framework learns a mapping from the global structure and local appearance of a bee to its pose. We evaluated our method on two challenging datasets. Experiments showed that it has achieved significant improvements over the existing insect pose estimation algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.