Abstract

Wild and managed bees are critical for the stability of trophic webs, angiosperm reproduction, and agricultural productivity. Unfortunately, as many as 40% of crop pollinators are in a steep decline due to habitat loss and exposure to agrochemicals. Pyrethroids, neonicotinoids, and macrocyclic lactones are among the many agrochemicals toxic to pollinating insects that are used extensively in industrial beef cattle feeding operations throughout the world. Fugitive feedyard particulate matter (PM) transports agrochemicals into the surrounding environs. To determine the impact of agrochemical-laden feedyard particulate matter on bee pollinators, we conducted in situ experiments wherein honeybees and mason bees were placed downwind and upwind of feedyards (N = 40). Concurrent, colocated total suspended particulate matter samples contained multiple insecticides and parasiticides including pyrethroids, neonicotinoids, and macrocyclic lactones, in significantly higher concentrations downwind of feedyards (bifenthrin, 8.45 ± 4.92; permethrin, 1032.34 ± 740.76; clothianidin, 3.61 ± 1.48; imidacloprid, 73.32 ± 47.52; thiamethoxam, 5.81 ± 3.16; abamectin, 0.45 ± 0.29; ivermectin, 8.88 ± 5.06 ng/g). Honeybees and mason bees sited downwind of feedyards always experienced higher mortality than those correspondingly sited upwind, and male mason bees experienced significantly higher mortality compared to females when both were sited downwind. Bees occurring downwind of beef cattle feedyards for 1 h are 232-260% more likely to die than those occurring upwind. Thus, agrochemicals used on and emitted from beef cattle feedyards are significant threats to bee pollinators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call