Abstract
Despite significant progress in studying soil organic carbon (SOC) and nitrogen (N) cycling in temperate forest soils, understanding of how bedrock lithology and tree species type influence these parameters remains tentative. To address this, we collected soil samples from three depth intervals and plant materials from two distinct tree species, beech, and lime, from sites within the Hyrcanian Forests (Iran) underlain by carbonate and intermediate volcanic bedrock. C and N elemental concentrations and their stable isotope compositions (δ13C and δ15N) were determined for bulk soil and four SOM fractions, including free particulate organic matter (FPOM), macroaggregates, microaggregates, silt + clay-sized fractions, as well as leaf litter and fine roots.Results indicated that lithology and tree species had no significant relationship with SOC content and δ13C of various soil fractions. Along with their δ15N values, TN contents of bulk soil, FPOM, macro- and microaggregates covaried with tree species and lithology. Total N content in bulk soils underneath lime trees exceeded that found beneath beech trees (0.43 % vs. 0.36 %). In terms of N turnover, volcanic soils showed significantly higher mean 15N enrichment relative to that observed for carbonate soils. The C and N fluxes observed for different tree species and lithologies revealed a 13C and 15N enrichment trend in the following order: macroaggregates< microaggregates< silt and clay-sized particles. Our results showed that underlying lithology influences C and N dynamics in forest soils, and the analysis of the natural abundance of 13C and 15N provides detailed information on C and N cycling and stabilization pathways in soil aggregates. Our findings demonstrate the importance of lithology as a factor in nutrient cycle estimates for terrestrial ecosystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.