Abstract

Interleukin-17A (IL-17A), cigarette smoke and oxidative/nitrosative stress are involved in inflammatory airway diseases, and the mechanisms behind these processes are still poorly understood. We investigated whether recombinant human IL-17A (rhIL-17A), in combination with cigarette smoke extracts (CSE), increases the levels of inducibile nitric oxide synthase (iNOS), reactive oxygen species, nitrotyrosine (NT) and the activation of signal transducer and activator of transcription 1 (STAT-1) in normal human bronchial epithelial cells (16HBE). The effect of beclomethasone dipropionate (BDP), formoterol and their combination was also evaluated. We demonstrated that rhIL-17A or CSE alone increases iNOS expression, reactive oxygen species and NT production and STAT-1 downstream signalling activation in terms of STAT-1ser727 and STAT-1tyr701 phosphorylation. The combination of both stimuli further increased iNOS, ROS, NT and STAT-1ser727 phosphorylation. The silencing of STAT-1 expression partially reduced the levels of iNOS, reactive oxygen species and NT generated by rhIL-17A and inhibited the effect of CSE alone in 16HBE cells. The treatment of the cells with the MEK1/2 inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis (o-aminophenylmercapto butadiene) abolished the expression of iNOS and STAT-1ser727 phosphorylation generated by rhIL-17A. 16HBE treated with BDP or formoterol alone partially suppressed the effect of IL-17A or CSE on ROS, NT, and STAT-1 activation. Furthermore the use of the drugs in combination showed an additive effect in 16HBE. Our findings demonstrate that IL-17A increases oxidative/nitrosative markers, likely via ERK1/2 downstream signalling and STAT-1 pathway activation in human bronchial epithelial cells. BDP and formoterol treatment reduces this effect showing an additive effect used in combination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.