Abstract

Beckwith-Wiedemann syndrome (BWS) is a clinically heterogeneous overgrowth syndrome associated with an increased risk for embryonal tumor development. BWS provides an ideal model system to study epigenetic mechanisms. This condition is caused by a variety of genetic or epigenetic alterations within two domains of imprinted growth regulatory genes on human chromosome 11p15. Molecular studies of BWS have provided important data with respect to epigenotype/genotype-phenotype correlations; for example, alterations of Domain 1 are associated with the highest risk for tumor development, specifically Wilms' tumor. Further, the elucidation of the molecular basis for monozygotic twinning in BWS defined a critical period for imprint maintenance during pre-implantation embryonic development. In the future, such molecular studies in BWS will permit enhanced medical management and targeted genetic counseling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.