Abstract

Hill and Kertz studied the prophet inequality on iid distributions [The Annals of Probability 1982]. They proved a theoretical bound of $1-\frac{1}{e}$ on the approximation factor of their algorithm. They conjectured that the best approximation factor for arbitrarily large n is $\frac{1}{1+1/e} \approx 0.731$. This conjecture remained open prior to this paper for over 30 years. In this paper we present a threshold-based algorithm for the prophet inequality with n iid distributions. Using a nontrivial and novel approach we show that our algorithm is a 0.738-approximation algorithm. By beating the bound of $\frac{1}{1+1/e}$, this refutes the conjecture of Hill and Kertz. Moreover, we generalize our results to non-iid distributions and discuss its applications in mechanism design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.