Abstract

Beats are slow periodic amplitude modulations resulting from the superposition of two spectrally close periodic signals. The difference frequency between the signals sets the frequency of the beat. A field study in the electric fish Apteronotus rostratus showed the behavioral relevance of very high difference frequencies. Contrary to expectations from previous studies, our electrophysiological data show strong responses of p-type electroreceptor afferents whenever the difference frequency approaches integer multiples (mistuned octaves) of the fish's own electric field frequency (carrier). Mathematical reasoning and simulations show that common approaches to extract amplitude modulations, such as Hilbert transform or half-wave rectification, are not sufficient to explain the responses at carrier octaves. Instead, half-wave rectification needs to be smoothed out, for example by a cubic function. Because electroreceptive afferents share many properties with auditory nerve fibers, these mechanisms may underly thehuman perception of beats at mistuned octaves as described by Ohm and Helmholtz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.