Abstract
This paper proposes a novel bearings-only maneuvering target tracking algorithm based on maximum entropy fuzzy clustering in a cluttered environment. In the proposed algorithm, the interacting multiple model (IMM) approach is used to solve the maneuvering problem of target, and the false alarms generated by clutter are accommodated through a probabilistic data association filter (PDAF). To reduce the computational load, the association probability is substituted by fuzzy membership degree provided by a modified version of fuzzy clustering algorithm based on maximum entropy principle, and the “maximum validation distance” is also defined based on the discrimination factor, which enables the algorithm eliminate invalid measurements. Moreover, to avoid the unobservability problem of passive target tracking, a nonlinear measurement model of multiple passive sensors is formulated. Finally, simulation results show that the proposed algorithm has advantages over the conventional IMM-PDAF algorithm in terms of simplicity and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: AEUE - International Journal of Electronics and Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.