Abstract

The present paper is focused on the bearing stress at failure of double-lap woven fabric kenaf fiber reinforced polymer (KFRP) hybrid bonded-bolted joints in experimental frameworks. The effects of different normalized plate width (plate width/hole diameter, W/d), lay-up types and bolt loads were incorporated in current study as specified in testing series. Generally, hybrid joint coupons separated within adhesive layer prior to net-tension failure or bearing/net-tension failure. The bearing stress at failure increased as W/d ratio increment, critical W/d is given as four and three in clamped and finger tight condition respectively. Lay-up types present insignificant effect to bearing stress at failure due to low volume fiber fraction in kenaf fiber composites. Combination of thicker and clamped conditions plate demonstrated greater bearing stress than equivalent finger-tight (FT) conditions due to higher load transferred from friction, as expected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.