Abstract

This paper presents the laboratory study on the bearing ratio of unreinforced and reinforced fly ash overlying soft soil beds of a total of 11 fly ash samples collected from different thermal power plants located in the Eastern part of India. The thickness of the bottom clay layer ( H c) was maintained as 100 mm in the bearing ratio mould. The upper layer thickness of compacted fly ash ( H f) was varied. The values of the ratio H f / H c used were 0.75, 1.00 and 1.25 in this study. The fly ash layer was reinforced with single layer and double layers of geotextiles. The effects of (i) position and number of layers of geotextiles, (ii) thickness of the compacted fly ash layer overlying soft soil layer, and (iii) moulding water content of the soft soil, on the bearing ratio of fly ash are highlighted. The inclusion of geotextile into the compacted fly ash bed enhances the bearing ratio. An increase in the thickness of compacted fly ash layer over the soft soil layer also increases the bearing ratio of the compacted fly ash bed. The values of unconfined compressive strength and deformation modulus of all the fly ash samples are also presented. Empirical relationships to estimate deformation modulus of fly ash from unconfined compressive strength and relationships between initial tangent modulus and secant modulus of fly ash are presented. It may be concluded from this research study that reinforced compacted fly ash overlying soft soil with a geotextile layer at the interface can find potential application in the construction of roads over soft soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call