Abstract

This paper addresses the problem of navigation using only relative direction measurements (i.e., relative distances are unknown) under field of view constraints. We present a novel navigation vector field for the bearing-based visual homing problem with respect to static visual landmarks in 2-D and 3-D environments. Our method employs two control fields that are tangent and normal to ellipsoids having landmarks as their foci. The tangent field steers the robot to a set of points where the average of observed bearings is parallel to the average of the desired bearings, and the normal field uses the angle between a pair of bearings as a proxy to adjust the robot's distance from landmarks and to satisfy the field of view constraints. Both fields are blended together to construct an almost globally stable control law. Our method is easy to implement, as it requires only comparisons between average bearings, and between angles of pairs of vectors. We provide simulations that demonstrate the performance of our approach for a double integrator system and unicycles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.