Abstract

Bearing incipient fault feature extraction is crucial and challenging throughout its life cycle. In this paper, an adaptive period matching enhanced sparse representation (APMESR) algorithm is developed to address this issue. First, a novel methodology for estimating the period of faulty impulses is proposed from the perspective of mining the periodicity-related numerical patterns. Second, the period estimation methodology is embedded in a sparse representation model to implement adaptive period matching to form APMESR, which is capable of achieving periodic sparsity. Third, maximal overlap discrete wavelet packet transform is selected as the linear transformation of APMESR for improving its ability to reduce noise and highlight periodic impulse signatures. Furthermore, evaluations and comparisons are conducted using simulations to demonstrate the validity and performance of the proposed period estimation methodology, linear transformation, and APMESR. Experimental results indicate that APMESR can effectively extract incipient bearing fault features and outperforms other well-advanced methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.