Abstract
Independent cart conveyor system is an emerging technology in industries, trying to replace servo motors and kinematic chains in several applications. It consists of several carts on a closed-loop path, each of which can freely move with respect to the other carts. Basically, each cart is an servo linear motor, where the windings and the drives are on the frame and the magnets are on the moving carts together with a feedback device (e.g. a Hall sensor to track the position). The drive controls and actuates each cart independently according to the motion profile loaded. From a mechanical point of view, the carts are connected to the frame through a series of rollers placed on and under a mechanical guide. The rollers may be subject to a premature wear and the condition monitoring of these components is a no trivial challenge, due to non-stationary working conditions of variable speed profile and variable loads. This paper provides a bearing fault model taking into account the motion profile of the cart, the mechanical design of the cart, the geometry of the conveyor path, the expected loads and the type of fault on the roller bearings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.