Abstract
Aimed at the problem of fault characteristic information bearing vibration signals being easily submerged in some background noise and harmonic interference, a new algorithm named enhanced differential product weighted morphological filtering (EDPWMF) is proposed for bearing fault feature extraction. In this method, an enhanced differential product weighted morphological operator (EDPWO) is first constructed by means of infusing the differential product operation and weighted operation into four basic combination morphological operators. Subsequently, aiming at the disadvantage of the parameter selection of the structuring element (SE) of EDPWO depending on artificial experience, an index named fault feature ratio (FFR) is employed to automatically determine the flat SE length of EDPWO and search for the optimal weighting correlation factors. The fault diagnosis results of simulation signals and experimental bearing fault signals show that the proposed method can effectively extract bearing fault feature information from raw bearing vibration signals containing noise interference. Moreover, the filtering result obtained by the proposed method is better than that of traditional morphological filtering methods (e.g., AVG, STH and EMDF) through comparative analysis. This study provides a reference value for the construction of advanced morphological analysis methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.