Abstract

Stochastic resonance is like a nonlinear filter to detect the weak bearing fault-induced impulses that submerged in strong noises. Signal-to-noise ratio (SNR) is often used as the index to evaluate the SR output, but the fault characteristic frequency (FCF) must be known in order to calculate SNR. A novel bearing fault diagnosis method called synthetic quantitative index-based adaptive underdamped stochastic resonance (SQI-AUSR) is proposed. The synthetic quantitative index (SQI) is composed of power spectrum kurtosis, kurtosis, margin index, and correlation coefficient. The SQI is independent of FCF, which avoids the limitation that the calculation of SNR must know the FCF. Numeric simulations and two case studies of bearing faults are carried out. The results show that (1) the SQI is more effective than other proposed indexes such as correlation coefficient and weight power spectrum kurtosis and (2) the proposed SQI-AUSR is effective for bearing fault diagnosis and is better than SNR-AOSR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.