Abstract

In view of the fact that the random noise interferes with the characteristic extraction of a rolling bearing fault signal, a new method of fault feature extraction is proposed based on the combination of the generalized S transform and singular value decomposition (SVD). Firstly, the 2D time–frequency spectrum bearing fault signal is obtained by applying the generalized S transform, and the time–frequency spectrum matrix is used as the objective matrix of SVD to solve the singular values. Then the K-means clustering algorithm is used to classify the singular value sequence, and the singular values for reconstruction are determined. Finally, the de-noised matrix is carried out the generalized S inversion transform to get the de-noised fault signal, and the power spectrum is calculated to finish the fault diagnosis. By analyzing the simulated signal and the actual bearing fault data, results show that the proposed method can effectively identify typical faults of rolling bearings and improve the diagnosis effect of rolling bearing faults. And it provides a new way to realize the fault diagnosis of rolling bearings under noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.