Abstract

The bearing is the core component of mechanical equipment, and attention has been paid to its health monitoring and fault diagnosis. Bearing fault diagnosis technology based on deep learning has been widely developed because of its powerful feature learning and fault classification ability. However, the traditional deep learning-based bearing fault diagnosis methods fail in mining the relationship between signals explicitly, which is beneficial to fault classification. Therefore, this paper proposes a new method based on a multi-head graph attention network (MHGAT) for bearing fault diagnosis. Firstly, it employs dynamic time warping to transform the original vibration signals into graph data with topological structure, so as to exploit the intrinsic structural information of the independent samples. Next, the graph data is input into the MHGAT, and the weights of neighbor nodes are learned automatically. Then, the MHGAT extracts the discriminative features from different scales and aggregates them into an enhanced, new feature representation of graph nodes through the multi-head attention mechanism. Finally, the enhanced, new features are fed into the SoftMax classifier for bearing fault diagnosis. The effectiveness of the proposed method is examined by two bearing datasets. The superiority of the proposed method is verified by comparison to traditional deep learning diagnosis models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.