Abstract

Multipoint Optimal Minimum Entropy Deconvolution Adjusted (MOMEDA) is an advanced deconvolution method, which can effectively inhibit the interference of background noise and distinguish the fault period by calculating the multipoint kurtosis values. However, multipoint kurtosis (MKurt) could lead to misjudgment since it is sensitive to spurious noise spikes. Considering that L-kurtosis has good robustness with noise, this paper proposes a multipoint envelope L-kurtosis (MELkurt) method for establishing the temporal features. Then, an enhanced image representation method of vibration signals is proposed by employing the Gramian Angular Difference Field (GADF) method to convert the MELkurt series into images. Furthermore, to effectively learn and extract the features of GADF images, this paper develops a deep learning method named Conditional Super Token Transformer (CSTT) by incorporating the Super Token Transformer block, Super Token Mixer module, and Conditional Positional Encoding mechanism into Vision Transformer appropriately. Transfer learning is introduced to enhance the diagnostic accuracy and generalization capability of the designed CSTT. Consequently, a novel bearing fault diagnosis framework is established based on the presented enhanced image representation and CSTT. The proposed method is compared with Vision Transformer and some CNN-based models to verify the recognition effect by two experimental datasets. The results show that MELkurt significantly improves the fault feature enhancement ability with superior noise robustness to kurtosis, and the proposed CSTT achieves the highest diagnostic accuracy and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.