Abstract

Bearing faults constitute a significant portion of all faults in wind turbine generators (WTGs). Current-based bearing fault detection has significant advantages over traditional vibration-based methods in terms of cost, implementation, and system reliability. This paper proposes a method based on stator current power spectral density (PSD) analysis for bearing fault detection of direct-drive WTGs. In the proposed method, appropriate interpolation/up-sampling and down-sampling algorithms are designed to convert the variable fundamental frequency of the stator current to a fixed frequency according to the estimated fundamental speed of the WTG. Consequently, the characteristic frequencies of bearing faults can be clearly identified form the resulting stator current PSD. Experimental results show that the proposed method can effectively detect bearing outer-race and inner-race defects for a direct-drive WTG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.