Abstract

Aiming at more efficient fault diagnosis, this research work presents an integrated anomaly detection approach for seeded bearing faults. Vibration signals from normal bearings and bearings with three different fault locations, as well as different fault sizes and loading conditions are examined. The Empirical Mode Decomposition and the Hilbert Huang transform are employed for the extraction of a compact feature set. Then, a hybrid ensemble detector is trained using data coming only from the normal bearings and it is successfully applied for the detection of any deviation from the normal condition. The results prove the potential use of the proposed scheme as a first stage of an alarm signalling system for the detection of bearing faults irrespective of their loading condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.