Abstract
Detecting bearing defects accurately and efficiently is critical for industrial safety and efficiency. This paper introduces Bearing-DETR, a deep learning model optimised using the Real-Time Detection Transformer (RT-DETR) architecture. Enhanced with Dysample Dynamic Upsampling, Efficient Model Optimization (EMO) with Meta-Mobile Blocks (MMB), and Deformable Large Kernel Attention (D-LKA), Bearing-DETR offers significant improvements in defect detection while maintaining a lightweight framework suitable for low-resource devices. Validated on a dataset from a chemical plant, Bearing-DETR outperformed the standard RT-DETR, achieving a mean average precision (mAP) of 94.3% at IoU = 0.5 and 57.5% at IoU = 0.5-0.95. It also reduced floating-point operations (FLOPs) to 8.2 G and parameters to 3.2 M, underscoring its enhanced efficiency and reduced computational demands. These results demonstrate the potential of Bearing-DETR to transform maintenance strategies and quality control across manufacturing environments, emphasising adaptability and impact on sustainability and operational costs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.