Abstract

The bearing–curling interactive behaviour and capacities of austenitic stainless steel thin sheet bolted connections are studied in this paper, underpinned by testing and numerical modelling. Experiments were firstly conducted on 26 austenitic stainless steel thin sheet bolted connection specimens, including 19 specimens designed with curling and 7 specimens designed without curling. The test failure loads, failure modes, load–in-plane elongation curves and load–out-of-plane deformation curves were fully reported. The experimental programme was followed by a numerical modelling programme, where finite element models were firstly developed to repeat the experimental results and then used to carry out parametric studies to generate a numerical data pool. Based on the obtained numerical data, the influences of end distance, edge distance, longitudinal spacing, transverse spacing and sheet thickness on failure loads of austenitic stainless steel thin sheet bolted connections were discussed. The test and numerical data were used to assess the existing design provisions, as given in the European code and American specification. The assessment results revealed that the European code led to overall accurate but scattered failure load predictions, while the American specification was shown to result in overly unsafe and scattered failure load predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call