Abstract

Laboratory model tests have been conducted on a strip foundation resting over multi-layered geogrid-reinforced dense and loose sand subjected to inclined load. Based on the laboratory model test results, a neural network model is developed to estimate the reduction factor for bearing capacity. The reduction factor obtained by ANN can be used to estimate the ultimate bearing capacity of a strip foundation subjected to centric inclined load from the ultimate bearing capacity of the same foundation under centric vertical loading. A thorough sensitivity analysis was carried out to find out the important parameters affecting the reduction factor. Emphasis was given on the construction of neural interpretation diagram, based on the weights developed in the neural network model, to determine the direct or inverse effect of input parameters to the output. An ANN model equation is developed based on trained weights of the neural network model. The results from artificial neural network (ANN) were compared with the laboratory model test results and these results are in good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.