Abstract

Bearing capacity is very important in geotechnical engineering, which depends on factors such as footing shape, stress distribution under footing and failure mechanism of soil. One of the methods for improving the bearing capacity and reducing settlement in soft and fine soils is adding column like elements to soil which called stone column. In this research using model tests and numerical modeling, the effect of existence and location of stone column on bearing capacity of strip footing near soft clay slope is studied. In fact, reinforced and unreinforced stone columns in different locations are added to slope and the effect of them on load-settlement behavior of strip footing rested on top of the slope was investigated. Group stone columns are also studied, and efficiency of them is investigated. Also numerical modeling is carried out with Plaxis 3D Foundation program, and finally the results of experimental and numerical modeling were compared. Results show that reinforcing clay slope with stone column in all situations leads to increase in bearing capacity of strip footing. Moreover, reinforcing stone columns with encasing cause better performance of stone columns and increase in bearing capacity of footing compared with the same unreinforced stone columns. The maximum effect of stone column on bearing capacity of strip footing occurs when the stone column is located beneath the footing, and with increase in distance between the column and footing, the bearing capacity of footing is decreased.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call