Abstract

Aggregate piers represent an economical ground improvement technique used to increase bearing capacity and reduce settlements of weak soils. Several approaches have been developed to estimate the bearing capacity of aggregate pier–reinforced clay, but these models exhibit large prediction bias and uncertainty. This study uses newly developed footing loading test data to investigate the relationship between the bearing capacity and the area replacement and slenderness ratios. The bearing capacity of a single aggregate pier, whether isolated or in groups, below a loaded footing increases as the area replacement ratio decreases due to increase in extent of confined soil surrounding the pier. The length and diameter of an aggregate pier is also shown to result in significantly increased bearing capacity, an effect that diminishes with increasing slenderness. New modifications are proposed to existing simplified and cavity expansion models to account for the effect of confinement, area replacement ratio, and slenderness ratio using a leave-one-out cross-validation technique. The cross-validation analysis resulted in robust bearing capacity models that are more accurate than existing analytical models. Additionally, the stress concentration ratio for shallow foundations supported by aggregate pier–reinforced plastic soils at failure was estimated and compared with the available data, indicating its sensitivity to design variables and showing that this critical design parameter may be predicted using the updated models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call