Abstract

Extensive research has investigated the bearing capacity of footings placed on leveled ground improved by deep mixed (DM) columns. However, few studies have focused on the effects of the embedment on the bearing capacity of footings on ground reinforced with DM columns. In geotechnical engineering practice underestimation of the limit load has occurred in China because of the increased use of conventional design methods for reinforced ground with embedment. In this investigation, a numerical model using a rigorous limit analysis tool, known as discontinuity layout optimization (DLO), is established. An equivalent area model is employed with an appropriate stress concentration ratio. Subsequently, a set of design charts of bearing capacity coefficients is produced with a special focus on the bearing capacity coefficient Nq and the failure mechanism. The results show that three failure patterns exist in the composite ground reinforced by DM columns. For cases without embedment, the bearing capacity coefficient Nc increases with the area replacement ratio to a certain value due to the occurrence of general shear failure mechanism. The bearing capacity coefficient Nγ decreases with the area replacement ratio, as the equivalent frictional strength of the reinforced region is reduced. When the embedment is considered, the failure mechanism of composite foundation has a significant influence on the coefficient Nq. Specifically, increase of column length leads to a larger value of Nq when block failure is observed. When a general shear failure pattern occurs, the effect of additional column lengths on the coefficient Nq can be neglected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call