Abstract

In the case of partial-area loading, compressive forces are transmitted into concrete members only over a limited area. For plain concretes and conventionally reinforced concretes, numerous investigations have already been carried out analyzing the load-bearing behavior under partial-area loading. Due to the tendency towards higher concrete strengths and the increasingly widespread use of steel fibers in recent years, it becomes also necessary to investigate the performance of high-strength steel fiber reinforced concrete (SFRC) under partial-area loading. This paper describes experimental tests on high-strength steel fiber reinforced concrete under partial-area loading with spatial and plane load distribution. Different area ratios and concretes with different fiber types and contents as well as fiber cocktails were considered. On the basis of the test results, a calculation approach is proposed for the determination of the bearable ultimate local stress. It is shown that by referring to the flexural tensile strength, instead of the compressive strength, as in the case of common calculation approaches, a more precise approximation of the ultimate local stresses for high-strength steel fiber reinforced concrete is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.