Abstract
Given a large graph, how can we calculate the relevance between nodes fast and accurately? Random walk with restart (RWR) provides a good measure for this purpose and has been applied to diverse data mining applications including ranking, community detection, link prediction, and anomaly detection. Since calculating RWR from scratch takes long, various preprocessing methods, most of which are related to inverting adjacency matrices, have been proposed to speed up the calculation. However, these methods do not scale to large graphs because they usually produce large and dense matrices which do not fit into memory. In this paper, we propose BEAR, a fast, scalable, and accurate method for computing RWR on large graphs. BEAR comprises the preprocessing step and the query step. In the preprocessing step, BEAR reorders the adjacency matrix of a given graph so that it contains a large and easy-to-invert submatrix, and precomputes several matrices including the Schur complement of the submatrix. In the query step, BEAR computes the RWR scores for a given query node quickly using a block elimination approach with the matrices computed in the preprocessing step. Through extensive experiments, we show that BEAR significantly outperforms other state-of-the-art methods in terms of preprocessing and query speed, space efficiency, and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.