Abstract

Within the halo experiment presently being conducted at the Low Energy Demonstration Accelerator (LEDA) at Los Alamos National Laboratory, specific beam instruments that acquire horizontally and vertically projected particle-density distributions out to approximately 10/sup 5/:1 dynamic range are located throughout the 52-magnet halo lattice. We measure the core of the distributions using traditional wire scanners, and the tails of the distribution using water-cooled graphite scraping devices. The wire scanner and halo scrapers are mounted on the same moving frame whose location is controlled with stepper motors. A sequence within the Experimental Physics and Industrial Control System (EPICS) software communicates with a National Instruments LabVIEW virtual instrument to control the motion and location of the scanner/scraper assembly. Secondary electrons from the wire scanner 0.033-mm carbon wire and protons impinging on the scraper are both detected with a lossy-integrator electronic circuit. Algorithms implemented within EPICS and in Research System's Interactive Data Language subroutines analyze and plot the acquired distributions. This paper describes this beam profile instrument, describes our experience with its operation, compares acquired profile data with simulation, and refers to other detailed papers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call