Abstract

The particle formation in spray flame synthesis (SFS) is a fast and complex process involving many sub-steps that may happen simultaneously. To investigate the mechanisms that typically lead to small aggregated primary particles, a sophisticated technique for in situ measurements in the flame is necessary to provide information about primary particles and the aggregates as well. This work describes the development of an in situ measurement setup using small angle X-ray scattering (SAXS) to investigate the entire particle formation mechanism of zirconia nanoparticles in and above a turbulent spray flame. In preparation for the in situ measurements, a beamline for single crystal diffractometry at Karlsruhe Research Accelerator (KARA) was adapted for low scattering SAXS experiments including optimizations of the optics and measurement protocol. As a result, a significant dependence of scattering intensity was detected as a function of the height above the burner. A detailed analysis of the SAXS data and comparison with TEM images allow insights into the primary particle growth, the development of fractal properties and the aggregation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call