Abstract

A new discrete-domain method is proposed for the beamforming of temporally broad-band bandpass plane waves (PWs) using a real-coefficient 2-D spatio-temporal (ST) finite-impulse response (FIR) filter having a novel rectangularly symmetric double-trapezoidal-shaped passband. The arriving temporally broad-band-bandpass ST PWs are received by a 1-D uniformly distributed sensor array. The sensor signals are pre-filtered, down-shifted to the intermediate frequency (IF) band, low-pass filtered and synchronously sampled by the real IF tri-stage temporal sampler array, resulting in a real-valued 2-D sampled sequence. The beamforming operation is then carried out on this 2-D sampled sequence using the real-coefficient 2-D FIR double-trapezoidal filter. Arithmetic complexity in the hardware implementation of the 2-D FIR double-trapezoidal filter is significantly reduced by using an array of real-coefficient polyphase 1-D FIR filters. Experimental results have confirmed that this method is capable of enhancing the desired temporally broad-band-bandpass ST PWs according to their directions of arrival under severe co-channel interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.