Abstract

Implants are poised to revolutionize personalized healthcare by monitoring and actuating physiological functions. Such implants operate under challenging constraints of the limited battery energy, heterogeneous tissue-dependent channel conditions, and human-safety regulations. To address these issues, we propose a new cross-layer protocol for galvanic coupled implants, wherein the weak electrical currents are used in place of classical radio frequency links. As the first step, we devise a method that allows multiple implants to communicate individual sensed data to each other through code division multiple access, combined with compressive sensing method to lower the transmission time and save energy, as well as delegates the computational burden of dispreading and decoding only to the on-body surface relays. Then, we devise a distributed beamforming approach that allows coordinated transmissions from the implants to the relays by considering the specific tissue path chosen and tissue heating-related safety constraints. We then proceed to implement distributed beamforming on a phantom of human tissue and prove an increase in received signal strength and a decrease in BER due to constructive interference of the signals of each implant. Our contributions are twofold: First, we devise a collision-free protocol that prevents undue interference at neighboring implants, especially for multiple deployments. Second, this is the first application of near-field distributed beamforming in human tissue. Simulation results reveal significant improvement in the network lifetime for implants of up to 79% compared to the galvanic coupled links without beamforming. In addition, the implementation of phantom tissue proves improved communication metrics when beamforming is used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.