Abstract

Beamforming (BF) design for large-scale antenna arrays with limited radio frequency chains and the phase-shifter-based analog BF architecture, has been recognized as a key issue in millimeter wave communication systems. It becomes more challenging with imperfect channel state information (CSI). In this letter, we propose a deep learning based BF design approach and develop a BF neural network (BFNN) which can be trained to learn how to optimize the beamformer for maximizing the spectral efficiency with hardware limitation and imperfect CSI. Simulation results show that the proposed BFNN achieves significant performance improvement and strong robustness to imperfect CSI over the conventional BF algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.