Abstract

We consider downlink non-orthogonal multiple access transmission where an access point communicates with a set of near and far users via a full-duplex multiple antenna relay. To deal with the inter-user interference at the near user and self-interference at the relay, we propose the optimum and suboptimal beamforming schemes. In addition, we consider two different user selection criteria, namely: 1) random near user and random far user (RNRF) selection and 2) nearest near user and nearest far user (NNNF) selection, and we derive the outage probabilities of the near and far users. Our findings reveal that as compared to half-duplex operation, full-duplex relaying can reduce the outage probability of the near users up to 63% in the case of NNNF user selection. With suboptimal beamforming schemes, the NNNF user selection shows a superior performance as compared to the RNRF user selection for all choices of transmit power, while with the optimum beamforming, the performance of the RNRF user selection converges to the NNNF user selection at high transmit power. The simulation results are provided to confirm the accuracy of the developed analytical results and facilitate a better performance comparison.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.