Abstract

The integration of intelligent reflecting surface (IRS) and multiple access provides a promising solution to improved coverage and massive connections at low cost. However, securing IRS-aided networks remains a challenge since the potential eavesdropper also has access to an additional IRS reflection link, especially when the eavesdropping channel state information is unknown. In this paper, we propose an IRS-assisted non-orthogonal multiple access (NOMA) scheme to achieve secure communication via artificial jamming, where the multi-antenna base station sends the NOMA and jamming signals together to the legitimate users with the assistance of IRS, in the presence of a passive eavesdropper. The sum rate of legitimate users is maximized by optimizing the transmit beamforming, the jamming vector and the IRS reflecting vector, satisfying the quality of service requirement, the IRS reflecting constraint and the successive interference cancellation (SIC) decoding condition. In addition, the received jamming power is adapted at the highest level at all legitimate users for successful cancellation via SIC. To tackle this non-convex optimization problem, we first decompose it into two subproblems, and then each subproblem is converted into a convex one using successive convex approximation. An alternate optimization algorithm is proposed to solve them iteratively. Numerical results show that the secure transmission in the proposed IRS-NOMA scheme can be effectively guaranteed with the assistance of artificial jamming.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.