Abstract

Phase-amplitude coupling (PAC) between neural oscillations of different frequencies plays a crucial role in cognitive processing. Assessing the PAC at both sensor and source levels may encounter the problem of spurious coupling because of the volume conduction, field spread, and source leakage. This paper presents a novel method, beamformer-based imaging of PAC (BIPAC), to estimate PAC between sources from electromagnetic signals. For each targeted brain region, this method can extract the source component with the maximum PAC to the reference signal. The results from two simulated MEG data sets demonstrated that the proposed method can achieve high localization accuracy and low spurious coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call