Abstract
The interplay between Ca2+ and reactive oxygen species (ROS) signaling pathways is well established, with reciprocal regulation occurring at a number of subcellular locations. Many Ca2+ channels at the cell surface and intracellular organelles, including the endoplasmic reticulum and mitochondria are regulated by redox modifications. In turn, Ca2+ signaling can influence the cellular generation of ROS, from sources such as NADPH oxidases and mitochondria. This relationship has been explored in great depth during the process of apoptosis, where surges of Ca2+ and ROS are important mediators of cell death. More recently, coordinated and localized Ca2+ and ROS transients appear to play a major role in a vast variety of pro-survival signaling pathways that may be crucial for both physiological and pathophysiological functions. While much work is required to firmly establish this Ca2+-ROS relationship in cancer, existing evidence from other disease models suggests this crosstalk is likely of significant importance in tumorigenesis. In this review, we describe the regulation of Ca2+ channels and transporters by oxidants and discuss the potential consequences of the ROS-Ca2+ interplay in tumor cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.