Abstract

The development of a microwave tube providing high output power (~1 MW) at a high frequency (~250 GHz) with high efficiency of the beam–wave power conversion is a challenging task. A great deal of theoretical and experimental efforts is directed toward such a goal. A promising powerful source of microwave radiation is the cyclotron autoresonance maser (CARM) oscillator. In this paper, we revisit the well-known physical models in a way, which is suitable for their implementation in the numerical tools for computer-aided design and optimization of a CARM operating at high frequency. The analysis developed by us is an attempt directed toward the realization of an adequate design tool for the development of CARM devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call