Abstract

The mouse tibia compression model is a leading model for studying bone's mechanoadaptive response to load. In studying this mechanoadaptive response, (FE) modelling is often used to determine the stress/strain within the tibia. The development of such models can be challenging and computationally expensive. An alternate approach is to use continuum mechanics based analytical theories, such asbeam theory (BT). However, applying BT to the mouse tibia requires the fibula be neglected, introducing error in the stress/strain distribution. While several studies have applied BT to the mouse tibia, no study has explored the accuracy of this approach. To address these questions, this work investigates the use of BT in determining stress/strain within the mouse tibia. By comparing BT against FE modelling, it was found that BT can accurately predict tibial stress/strain if correction factors are applied to account for the effect of the fibula. The 25, 37, 50 and 75% cross sections are studied. Focusing on the 37% cross section, without correction, BT can have errors of approximately 21.6%. With correction, this is reduced to 6.6%. Such correction factors are presented. The developed BT model is applicable in the diaphysis and distal metaphysis, where the assumptions of BT are valid. This work verifies BT for determining localised strains in a mouse tibia compression model. This is anticipated to provide efficiency dividends, allowing for high throughput modelling of the mouse tibia, advancing study of bone's mechanoadaptive response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call