Abstract

We proposed a scheme to realize tunable giant Goos-Hänchen (GH) and Imbert Fedorov (IF) shifts of the Laguerre-Gauss (LG) beam on a guided-wave surface plasmon resonance (GWSPR) structure backed by a coherent atomic medium with the spontaneously generated coherence (SGC) effect. The orbital angular momentum carried by the incident LG beam can be applied to enhance and control IF shifts but is not beneficial to GH shifts. However, in the presence of SGC effect in the atomic medium, both GH and IF shifts can be simultaneously enhanced and well controlled. With the SGC effect, the linear absorption of the atomic medium vanishes, while the nonlinear absorption of that can be significantly enhanced and controlled by the trigger field, which contributes to controlling of the beam shifts. In particular, the direction of GH shifts can be switched by the Rabi frequency of the trigger field, which can be interpreted as the result of a competition between the inherent damping and the radiative damping corresponding to the nontrivial change in the loci of the reflection coefficients. This scheme provides an effective method to flexibly control and enhance the beam shifts, so it has potential applications in integrated optics, optical sensors, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call