Abstract
Uniform intensity of laser radiation is very important in holographic and interferometry technologies, therefore transformation of typical Gaussian distribution of a TEM00 laser to flat-top (top hat) is an actual technical task, it is solved by applying beam shaping optics. Holography and interferometry have specific requirements to a uniform laser beam, most important of them are flatness of phase front and extended depth of field. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. We suggest applying refractive field mapping beam shapers piShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. This approach is used in SLM-based technologies of Computer Generated Holography, Dot-Matrix mastering of security holograms, holographic data storage, holographic projection, lithography, interferometric recording of Volume Bragg Gratings. High optical quality of resulting flat-top beam allows applying additional optical components to vary beam size and shape, thus adapting an optical system to requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holographic systems. Examples of real implementations and experimental results will be presented as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.