Abstract

When using a beam to make a measurement in situ, irrespective of scale, the process implicitly includes the taking of a sample. Therefore, the uncertainty of the measurement result needs to include the uncertainty generated by the sampling process, which is usually dominated by the heterogeneity of the analyte at that scale. Reliable estimates of the uncertainty of beam measurements are essential to judge their fitness-for-purpose (FFP) and hence to enable their rigorous interpretation. This approach can be applied to a wide range of techniques for the analytical assessments of materials, from handheld portable X-ray Fluorescence (pXRF) at the millimeter scale, to Secondary Ion Mass Spectrometry (SIMS) at the micron scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call