Abstract

Accurate simulation of the propagation of light between the spacecraft of the laser interferometer space antenna (LISA) gravitational wave observatory will be a vital tool in determining the optical design of the telescopes used in the constellation. In this work, we examine the methods available for numerical simulation of this propagation, and consider the effect of an aberrated transmitting telescope (Tx) on the light collected by the receiving telescope (Rx). Propagation software has been developed using direct numerical integration methods, and has been validated by comparison to analytical solutions for particular cases. Zernike modal aberrations up to and including primary spherical have been considered in the Tx, and, in particular, the effects of defocus, astigmatism and coma were examined. It was found that minimization of the even radial order aberrations in Tx resulted in a reduced wavefront error at Rx, while odd aberrations such as coma can displace the maximum irradiance away from the optical axis. Thus careful consideration of the impact of telescope aberrations will be required to minimise detrimental effects on the detection of gravitational waves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.