Abstract

The authors present the investigation results of flared quantum dot (QD) semiconductor optical amplifiers (SOAs) in a continuous wave (CW) high-saturation regime using the finite difference beam propagation method (FD-BPM) model. By combining the BPM model with pre-calculated results obtained from multi-population rate equations (MPREs), the authors include in a rigorous way the non-linear gain and refractive index variation of semiconductor gain medium caused by saturation effects in QD. Using this model, a comprehensive analysis of the symmetric tapered QD SOAs is reported, verifying the influence of saturation effect on the characteristics of such devices and optimising the design of both gain and weakly index-guided structures for operation in the high-saturation regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call